円の分割

(問題) separated_circle 上図のように、円を3本の直線で分割すると、最大7つの部分に分けられます。 それでは、円を10本の直線で分割すると、最大いくつの部分に分けられるでしょうか?

解答・コメントをどうぞ

必須項目 *


円の分割」への回答 6件

  1. Misa
    わかんないけど・・・あてずっぽうで56。
    
    線が1本で2つ。
    2本で4つ。+2
    3本で7つ。+3
    
    なら、4本で+4、5本で+5・・・10本で56。
    どうだろう?
  2. でん子
    56分割
    0本で1分割(?)
    1本で2分割
    2本で4分割
    3本で7分割 次は4本で11分割
    本数に前回までの分割数が足されているので、
    10本まで繰り返すと56分割になる。
    と思いました。
  3. はる
    答え=56
    
    直線の数が0、1、2、3と増えていくと、
    分割の数は1、2、4、7と増えていく。
    
    つまり、最初の1に1、2、3を足していく
    階差数列と考えられるので、
    直線が10本のときは、
    
    1+1+2+3+4+5+6+7+8+9+10
    
    =56
    
    ではないかと思います。
  4. Tatsuya
    1本で2つ、2本で4つ、3本で7つ・・・
    ということは隣接する2項の差が等差数列になる
    これは階差数列というんですね
    勉強したはずなのにすっかり忘れてます・・・
    
    差が Bn=n+1 となるので
    
                n-1
    An=A1+Σ(k+1)
                k=1
    
    =2+n(n-1)/2+(n-1)
    =n^2/2+n/2+1
    という式になるので
    n=10のとき
    56となる
  5. ZVX
    他の直線全てに交わるように線を引く。
    1+(1+2+3+……+10)=56
  6. バルタン星人
    1本⇒2
    2本⇒4
    3本⇒7
    4本⇒11
    n本⇒1+1+2+3・・・+n
    10本⇒1+55=56